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Unified Lagrangian-Hamiltonian Formalism
for Contact Systems

Manuel de León, Jordi Gaset, Manuel Lainz, Xavier Rivas, and Narciso Román-Roy*

We present a unified geometric framework for describing both the Lagrangian
and Hamiltonian formalisms of contact autonomous mechanical systems,
which is based on the approach of the pioneering work of R. Skinner and R.
Rusk. This framework permits to skip the second order differential equation
problem, which is obtained as a part of the constraint algorithm (for singular
or regular Lagrangians), and is especially useful to describe singular
Lagrangian systems. Some examples are also discussed to illustrate
the method.

1. Introduction

In a seminal paper in 1983, R. Skinner and R. Rusk introduced a
new framework for the dynamics of first-order autonomous me-
chanical systems which combined the Lagrangian and Hamil-
tonian formalisms[47] into a single one. The aim of this for-
mulation was to obtain a common framework for both regular
and singular dynamics, describing simultaneously the Hamil-
tonian and the Lagrangian formulations of the dynamics. Over
the years, Skinner–Rusk’s framework was subsequently gener-
alized in many directions. So, in [9] it was extended for explicit
time-dependent systems using a jet bundle language, in [31] to
other kinds of more general time-dependent singular differential
equations, and in [3, 9] to first-order non-autonomous dynami-
cal systems in general. In [17] the Skinner–Rusk formalism was
used to study vakonomicmechanics and the comparison between
the solutions of vakonomic and nonholonomic mechanics. The
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formalism was also extended to higher-
order autonomous and non-autonomous
mechanical systems,[32,33,40,41] and it was
also applied to control systems.[2,16] Fi-
nally, in [8, 20, 22, 42, 45, 46, 48] the
Skinner–Rusk model was developed for
first and higher-order classical field the-
ories and, in particular, it was used to
describe different models of gravitational
theories.[11,12,24]

In recent years, there has been an
increasing interest in the study of
contact Hamiltonian and Lagrangian

systems.[4,6,18,19,21,27,37] The essential tool is contact
geometry,[1,7,10,28] which has been used to describe dissipa-
tive systems[13,23,38,44] and several other types of physical systems
in thermodynamics, quantum mechanics, circuit theory, control
theory, etc. (see for instance, [5, 30, 36, 43]). Recently, a general-
ization of contact geometry has been developed to describe field
theories with dissipation.[25,26]

In the contact setting the corresponding motion equations are
obtained using the Herglotz principle instead of the Hamilton
one.[34,35] so that these dynamical systems do not enjoy conser-
vative properties, but dissipative ones. The main difference be-
tween both variational principles is that, in the Herglotz varia-
tional principle, the action is defined by a non-autonomous ODE
instead of an integral. Therefore, if we start with a Lagrangian
function L : TQ ×ℝ ←→ ℝ such that L = L(qi, vi, z) using bundle
coordinates, then the solutions to the dynamics obey theHerglotz
equations

d
dt

(
𝜕L
𝜕q̇i

)
− 𝜕L

𝜕qi
= 𝜕L

𝜕q̇i
𝜕L
𝜕z

,

where vi = q̇i, and they are sometimes called generalized Euler-
Lagrange equations.
The contact Hamiltonian picture is obtained on the bundle

T∗Q ×ℝ just considering the canonical contact form 𝜂 = dz − 𝜃o,
where 𝜃o = pi dq

i (in bundle coordinates) is the canonical Liou-
ville form on T∗Q . So, given a Hamiltonian function H : T∗Q ×
ℝ ←→ ℝ, we can find a unique Hamiltonian vector field satisfying
the equations

i(XH)d𝜂 = dH − ((H))𝜂, i(XH)𝜂 = −H ,

where is the Reeb vector field characterized by the conditions

i()d𝜂 = 0, i()𝜂 = 1.

Fortschr. Phys. 2020, 2000045 © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim2000045 (1 of 12)

http://www.fp-journal.org
mailto:narciso.roman@upc.edu
https://doi.org/10.1002/prop.202000045
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fprop.202000045&domain=pdf&date_stamp=2020-06-23


www.advancedsciencenews.com www.fp-journal.org

The integral curves of XH satisfy the contact Hamiltonian equa-
tions

dqi

dt
= 𝜕H

𝜕pi
,

dpi
dt

= −
(
𝜕H
𝜕qi

+ pi
𝜕H
𝜕z

)
, dz

dt
= pi

𝜕H
𝜕pi

−H.

When the Lagrangian L is regular (in the usual sense) we can
pass from the Lagrangian to the Hamiltonian picture by means
of the corresponding Legendre transformation.
The aim of this paper is to extend the Skinner-Rusk formalism

to contact dynamical systems (Section 3), now, carefully studying
the dynamical equations of motion and the submanifold where
they are consistent, and showing how the Lagrangian andHamil-
tonian descriptions are recovered from this unified framework.
First, we define the extended unified bundle (also called the ex-

tended Pontryagin bundle)  = TQ ×Q T∗Q ×ℝ. Then we con-
sider a precontact form on  , which is just the pull-back of the
canonical contact form on T∗Q ×ℝ. Finally, the Hamiltonian en-
ergy is constructed from a Lagrangian L ∈ C∞(TQ ×ℝ) by

 = piv
i − L(qj, vj, z) ∈ C∞().

The rest is just to apply a constraint algorithm to this precon-
tact Hamiltonian system. One of the main interest in such for-
mulation is that the SODE condition is obtained for free. If the
Lagrangian is regular, we obtain the usual results when the dy-
namics are projected on the Lagrangian or the Hamiltonian side.
In the singular case, the algorithm is properly connected (also by
projection) with the corresponding Lagrangian and Hamiltonian
constraint algorithms.
The paper is structured as follows. Section 2 is devoted to

recall the main facts and results on contact Hamiltonian and
Lagrangian dynamics. In Section 3 we develop the unified for-
malism and explain how the Lagrangian and Hamiltonian de-
scriptions are recovered from it. Finally, in Section 4, we discuss
several interesting examples of regular and singular systems.
All themanifolds are real, second countable and C∞. Themaps

are assumed to be C∞. Sum over repeated indices is understood.

2. Hamiltonian and Lagrangian Formalisms of
Contact Systems

2.1. Contact Geometry and Contact Hamiltonian Systems

(See, for instance, [6, 27, 28, 37] for details).

Definition 1. Let M be a (2n + 1)-dimensional manifold. A contact
form in M is a differential 1-form 𝜂 ∈ Ω1(M) such that 𝜂 ∧ (d𝜂)∧n is
a volume form in M. Then (M, 𝜂) is said to be a contact manifold.

The fact that 𝜂 ∧ (d𝜂)∧n is a volume form induces a decompo-
sition

TM = ker d𝜂 ⊕ ker 𝜂 ≡ R ⊕C.

Proposition 1. If (M, 𝜂) is a contact manifold then there exists a
unique vector field  ∈ 𝔛(M), which is called Reeb vector field, such
that

i()d𝜂 = 0, i()𝜂 = 1. (1)

This vector field generates the distributionR, which is called theReeb
distribution.

In addition, for every point p ∈ M, there exist a chart
(U; qi, pi, z), 1 ≤ i ≤ n, such that

𝜂|U = dz − pi dq
i; |U = 𝜕

𝜕z
.

These are theDarboux or canonical coordinates of the contactman-
ifold (M, 𝜂).[29]

The canonical model for contact manifolds is the manifold
T∗Q ×ℝ. In fact, if z is the cartesian coordinate of ℝ, and 𝜃o ∈
Ω1(T∗Q) and 𝜔o = −d𝜃o ∈ Ω2(T∗Q) are the canonical forms in
T∗Q , and 𝜋1 : T

∗Q ×ℝ → T∗Q is the canonical projection, then
𝜂 = dz − 𝜋∗

1𝜃o is a contact form in T∗Q ×ℝ,with d𝜂 = 𝜋∗
1𝜔o, and

the Reeb vector field is = 𝜕

𝜕z
.

Given a contact manifold (M, 𝜂), we have the C∞(M)-module
isomorphism

♭ : 𝔛(M) ←→ Ω1(M)

X ←→ i(X)d𝜂 + (i(X )𝜂)𝜂

Theorem 1. If (M, 𝜂) is a contact manifold, for every H ∈ C∞(M),
there exists a unique vector field XH ∈ 𝔛(M) such that

i(XH)d𝜂 = dH − ((H))𝜂, i(XH)𝜂 = −H. (2)

Then, the integral curves c : I ⊂ ℝ → M of XH are the solutions to the
equations

i(c′)d𝜂 =
(
dH − ((H))𝜂

)
◦c, i(c′)𝜂 = −H◦c , (3)

where c′ : I ⊂ ℝ → TM is the canonical lift of the curve c to the tan-
gent bundle TM.

Definition 2. The vector field XH is the contact Hamiltonian vector
field associated to H and the Equations (2) and (3) are the contact
Hamiltonian equations for this vector field and its integral curves, re-
spectively. The triple (M, 𝜂, H) is said to be a contact Hamiltonian
system.

Taking Darboux coordinates (qi, pi, z), the contact Hamiltonian
vector field is

XH = 𝜕H
𝜕pi

𝜕

𝜕qi
−
(
𝜕H
𝜕qi

+ pi
𝜕H
𝜕z

)
𝜕

𝜕pi
+
(
pi
𝜕H
𝜕pi

−H
)

𝜕

𝜕z
;

and its integral curves c(t) = (qi(t), pi(t), z(t)) are solutions to the
dissipative Hamilton Equations (3) which are

q̇i = 𝜕H
𝜕pi

, ṗi = −
(
𝜕H
𝜕qi

+ pi
𝜕H
𝜕z

)
, ż = pi

𝜕H
𝜕pi

−H. (4)

Remark 1. The contact Hamiltonian Equations (2) are equivalent
to

L(XH)𝜂 = −((H)) 𝜂, i(XH)𝜂 = −H ,

and also to

♭(XH) = dH − ((H) +H)𝜂.
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Furthermore, Equations (2) can be written withoutmaking use
of the Reeb vector field , as follows: consider the open set U =
{p ∈ M;H(p) ≠ 0} and the 2-form Ω = −H d𝜂 + dH ∧ 𝜂 on U. A
vector field XH ∈ 𝔛(U) is the contact Hamiltonian vector field if,
and only if,

i(XH)Ω = 0, i(XH)𝜂 = −H .

On the open set U, a path c : I ⊂ ℝ → M is an integral curve of
the contact Hamiltonian vector field XH if, and only if, it is a so-
lution to

i(c′)Ω = 0, i(c′)𝜂 = −H◦c .

Remark 2. When some of the conditions stated in Definition 1
do not hold, 𝜂 is said to be a precontact structure and (M, 𝜂) is
a precontact manifold (then the map ♭ is not an isomorphism)
and (M, 𝜂, H) is called a precontact Hamiltonian system. Then,
the Hamiltonian equations are not necessarily compatible every-
where on M and a suitable constraint algorithm must be imple-
mented in order to find a final constraint submanifold Pf → M (if
it exists) where there are Hamiltonian vector fields XH ∈ 𝔛(M),
tangent to Pf (which are not necessarily unique) solutions to
the Hamiltonian equations on Pf . Furthermore, for precontact
manifolds, Reeb vector fields are not uniquely determined but,
if (M, 𝜂, H) is a precontact Hamiltonian system, the constraint
algorithm and the final dynamics are independent on the Reeb
chosen. (See [18] for a deeper analysis on all these topics).

2.2. Contact Lagrangian Systems

(See [13, 15, 18, 27] for details).
Let Q be an n-dimensional manifold and the bundle TQ ×ℝ

with canonical projections

z : TQ ×ℝ → ℝ, 𝜏1 : TQ ×ℝ → TQ, 𝜏0 : TQ ×ℝ → Q ×ℝ.

Natural coordinates in TQ ×ℝ are denoted (qi, vi, z).
As a product manifold, we can write T(TQ ×ℝ) = (T(TQ) ×

ℝ)⊕TQ×ℝ (TQ × Tℝ), so any operation that can act on tangent
vectors to TQ can act on tangent vectors to TQ ×ℝ. In particular,
the vertical endomorphism of T(TQ) and the Liouville vector field
on TQ yield a vertical endomorphism : T(TQ ×ℝ) → T(TQ ×ℝ)
and a Liouville vector fieldΔ ∈ 𝔛(TQ ×ℝ) (this is the Liouville vec-
tor field of the vector bundle structure defined by 𝜏0). In natural
coordinates, their local expressions are

 = 𝜕

𝜕vi
⊗ dqi , Δ = vi 𝜕

𝜕vi
.

Let c : ℝ → Q ×ℝ be a path, with c = (c1, c0). The prolongation
of c to TQ ×ℝ is the path

c̃ = (c′1, c0) : ℝ ←→ TQ ×ℝ ,

where c′1 is the velocity of c1. The path c̃ is said to be holonomic.
A vector field Γ ∈ 𝔛(TQ ×ℝ) is said to satisfy the second-order
condition (for short: it is a sode) when all of its integral curves are

holonomic. In coordinates, if c(t) = (ci(t), z(t)), then

c̃(t) =
(
ci(t), dc

i

dt
(t), z(t)

)
.

and the local expression of a sode is

Γ = vi 𝜕

𝜕qi
+ f i 𝜕

𝜕vi
+ g 𝜕

𝜕z
.

So, in coordinates a sode defines a system of differential equa-
tions of the form

d2qi

dt2
= f i(q, q̇, z), dz

dt
= g(q, q̇, z).

A vector fieldΓ ∈ 𝔛(TQ ×ℝ) is a sode if, and only if, (Γ) = Δ.

Definition 3. A Lagrangian function is a function L : TQ ×ℝ → ℝ.
The Lagrangian energy associated with L is the function EL :=

Δ(L) − L ∈ C∞(TQ ×ℝ).
The Cartan forms associated with L are defined as

𝜃L = t ◦dL ∈ Ω1(TQ ×ℝ) , 𝜔L = −d𝜃L ∈ Ω2(TQ ×ℝ).

The contact Lagrangian form is

𝜂L = dz − 𝜃L ∈ Ω1(TQ ×ℝ) ;

it satisfies that d𝜂L = 𝜔L.
The couple (TQ ×ℝ, L) is a contact Lagrangian system.

In natural coordinates in TQ ×ℝ we have

𝜂L = dz − 𝜕L
𝜕vi

dqi ,

d𝜂 = − 𝜕2L
𝜕z𝜕vi

dz ∧ dqi − 𝜕2L
𝜕qj𝜕vi

dqj ∧ dqi − 𝜕2L
𝜕vj𝜕vi

dvj ∧ dqi ,

Now, we define the Legendre map associated with a Lagrangian
L as the fiber derivative of L, considered as a function on the
vector bundle 𝜏0 : TQ ×ℝ → Q ×ℝ; that is, the map L : TQ ×
ℝ → T∗Q ×ℝ given by

L(vq, z) =
(
L(⋅, z)(vq), z

)
,

where L(⋅, z) is the Lagrangian with z fixed. Its local expression
in natural coordinates is

L∗z = z, L∗qi = qi, L∗pi =
𝜕

𝜕vi
.

Remark 3. The Cartan forms can also be defined as 𝜃L =
L ∗(𝜋∗

1𝜃o) and 𝜔L = L ∗(𝜋∗
1𝜔o).

Proposition 2. Given a Lagrangian L, then the Legendre map L is
a local diffeomorphism if, and only if, (TQ ×ℝ, 𝜂L) is a contact man-
ifold.

The conditions in the proposition mean that the Hessian ma-
trix (Wij) = ( 𝜕2L

𝜕vi𝜕vj
) is everywhere nonsingular.
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Definition 4. A Lagrangian function L is said to be regular if the
equivalent conditions in Proposition 2 hold. Otherwise, L is called a
singular Lagrangian. In particular, L is said to be hyperregular if L
is a global diffeomorphism.
A singular Lagrangian is almost-regular if: (i) P1 = L(TQ ×ℝ)

is a closed submanifold of T∗Q ×ℝ, (ii) L is a submersion onto
its image, (iii) for every vq ∈ TQ ×ℝ, the fibres L−1(L(vq)) are
connected submanifolds of TQ ×ℝ.

Remark 4. As a result of the preceding definitions and results, ev-
ery regular contact Lagrangian system has associated the contact
Hamiltonian system (TQ ×ℝ, 𝜂L, EL).

Given a regular contact Lagrangian system (TQ ×ℝ, L), from
(1) we have that the Reeb vector fieldL ∈ 𝔛(TQ ×ℝ) for this sys-
tem is uniquely determined by the relations

i(L)d𝜂L = 0, i(L)𝜂L = 1 ,

and its local expression is

L =
𝜕

𝜕z
−Wji 𝜕2L

𝜕z𝜕vj
𝜕

𝜕vi
,

where (Wji) is the inverse of the Hessian matrix, namely
WjiWik = 𝛿

j
k.

Definition 5. Let (TQ ×ℝ, L) be a contact Lagrangian system.
The contact Euler–Lagrange equations for a holonomic curve c̃ :

I ⊂ ℝ → TQ ×ℝ are

i(c̃′)d𝜂L =
(
dEL − (L(EL))𝜂L

)
◦c̃, i(c̃′)𝜂L = −EL◦c̃ , (5)

where c̃′ : I ⊂ ℝ → T(TQ ×ℝ) denotes the canonical lifting of c̃ to
T(TQ ×ℝ).
The contact Lagrangian equations for a vector field XL ∈ 𝔛(TQ ×

ℝ) are

i(XL)d𝜂L = dEL − (L(EL))𝜂L, i(XL)𝜂L = −EL. (6)

A vector field which is a solution to these equations is called a contact
Lagrangian vector field (it is a contact Hamiltonian vector field for
the function EL).

Remark 5. In the open set U = {p ∈ M;(p) ≠ 0}, the above
equations can be stated equivalently as

i(c̃′)ΩL = 0, i(c̃′)𝜂L = −EL◦c̃ ,

and

i(XL)ΩL = 0, i(XL)𝜂L = −EL ,

where ΩL = −EL d𝜂L + dEL ∧ 𝜂L.

In natural coordinates, for a holonomic curve c̃(t) =
(qi(t), q̇i(t), z(t)), the contact Euler-Lagrange Equations (5)
are

ż = L , (7)

𝜕2L
𝜕vj𝜕vi

q̈j + 𝜕2L
𝜕qj𝜕vi

q̇j + 𝜕2L
𝜕z𝜕vi

ż − 𝜕L
𝜕qi

= d
dt

(
𝜕L
𝜕vi

)
− 𝜕L

𝜕qi
= 𝜕L

𝜕z
𝜕L
𝜕vi

; (8)

meanwhile, for a vector field XL ∈ 𝔛(TQ ×ℝ), if L is a regular
Lagrangian, then XL is a sode which is called the Euler–Lagrange
vector field associated with L and whose integral curves are the
Euler–Lagrange Equations (7) and (8). The local expression of this
Euler–Lagrange vector field is

XL = L 𝜕

𝜕z
+ vi 𝜕

𝜕qi

+Wik

(
𝜕L
𝜕qk

− 𝜕2L
𝜕qj𝜕vk

vj − L 𝜕2L
𝜕z𝜕vk

+ 𝜕L
𝜕z

𝜕L
𝜕vk

)
𝜕

𝜕vi
.

Remark 6. If L is singular, although (TQ ×ℝ, 𝜂L) is not strictly a
contactmanifold, but a precontact one, and hence the Reeb vector
field is not uniquely defined, it can be proved that the Lagrangian
Equations (6) are independent on the Reeb vector field used (see
[18]). Then, solutions to the Lagrangian equations are not nec-
essarily sode and, in order to obtain the Euler–Lagrange Equa-
tions (8), the condition  (XL) = Δmust be added to the above La-
grangian equations. Furthermore, these equations are not neces-
sarily compatible everywhere on TQ ×ℝ and a suitable constraint
algorithmmust be implemented in order to find a final constraint
submanifold Sf → TQ ×ℝ (if it exists) where there are sode vec-
tor fields XL ∈ 𝔛(TQ ×ℝ), tangent to Sf , which are (not neces-
sarily unique) solutions to the above equations on Sf . All these
problems have been studied in detail in [18].

Remark 7. In the (hyper)regular case we have that L is a dif-
feomorphism between (TQ ×ℝ) and (T∗Q ×ℝ), and L ∗𝜂 =
𝜂L. Furthermore, there exists (maybe locally) a function H ∈
C∞(T∗Q ×ℝ) such that L ∗H = EL; then we have the contact
Hamiltonian system (T∗Q ×ℝ, 𝜂, H), for which L∗ = .
Then, ifXH ∈ 𝔛(T∗Q ×ℝ) is the contact Hamiltonian vector field
associated with H, we have that L∗XL = XH.
In the almost-regular case we have the submanifold j1 : P1 =

L(TQ ×ℝ) → T∗Q ×ℝ, and L ∗𝜂 = 𝜂L. Then there exists a
function H1 ∈ C∞(P1) such that L ∗H1 = EL, and we have the
precontact Hamiltonian system (P1, 𝜂1, H1), where 𝜂1 = j∗1𝜂. The
corresponding (precontact) Hamilton equations are not necessar-
ily compatible everywhere on P1 and a constraint algorithm must
be implemented in order to find a final constraint submanifold
Pf → P1 (if it exists) where there are vector fields XH1

∈ 𝔛(P1),
tangent to Pf (which are not necessarily unique) solutions to the
above equations on Pf . This algorithm and the equivalence be-
tween the Lagrangian and the Hamiltonian description of these
precontact systems are also studied in [18].

3. Unified Formalism

3.1. Unified Bundle: Precontact Canonical Structure

For a contact dynamical system the configuration space is Q ×ℝ,
where Q is an n-dimensional manifold, with coordinates (qi, z).
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Then, consider the bundles TQ ×ℝ and T∗Q ×ℝ with canonical
projections

𝜏1 : TQ ×ℝ → TQ , 𝜏0 : TQ ×ℝ → Q ×ℝ

𝜋1 : T
∗Q ×ℝ → T∗Q , 𝜋0 : T

∗Q ×ℝ → Q ×ℝ ,

with natural coordinates (qi, vi, z) and (qi, pi, z) adapted to the
bundle structures. We denote by dz the volume form in ℝ, and
its pull-backs to all the manifolds. Let 𝜃o ∈ Ω1(T∗Q) and 𝜔o =
−d𝜃o ∈ Ω2(T∗Q) be the canonical forms of T∗Q whose local ex-
pressions are 𝜃o = pidq

i and 𝜔o = dqi ∧ dpi; and denote 𝜃 := 𝜋∗
1𝜃o

and 𝜔 := 𝜋∗
1𝜔o.

Definition 6. We define the extended unified bundle (also called the
extended Pontryagin bundle)

 = TQ ×Q T∗Q ×ℝ ,

which is endowed with the natural submersions

𝜌1 :  → TQ ×ℝ , 𝜌2 :  → T∗Q ×ℝ, 𝜌0 :  → Q ×ℝ,

z :  → ℝ.

The natural coordinates in are (qi, vi, pi, z).

Definition 7. We say that a path 𝝈 : ℝ →  is holonomic in  if
the path 𝜌1◦𝝈 : ℝ → TQ ×ℝ is holonomic.
A vector field X ∈ 𝔛() is said to satisfy the second-order condition

in (for short: it is a sode in) when all of its integral curves are
holonomic in .

In coordinates, a holonomic path in is expressed as

𝝈 =

(
𝜎i
1(t),

d𝜎i
1

dt
(t), 𝜎2 i(t), 𝜎0(t)

)
,

and a sode in reads as

X = vi 𝜕

𝜕qi
+ Fi 𝜕

𝜕vi
+Gi

𝜕

𝜕pi
+ f 𝜕

𝜕z
.

The bundle is endowed with the following canonical struc-
tures:

Definition 8.

1. The coupling function in is the map  :  → ℝ defined as fol-
lows: for every w = (vq, pq, z) ∈  , where q ∈ Q, pq ∈ T∗Q, and
vq ∈ TQ, then (w) := ⟨pq, vq⟩.

2. The canonical 1-form is the 𝜌0-semibasic form Θ := 𝜌∗2 𝜃 ∈
Ω1(). The canonical 2-form is Ω := −dΘ = 𝜌∗2 𝜔 ∈ Ω2().

3. The canonical contact 1-form is the 𝜌1-semibasic form 𝜂 := dz −
Θ ∈ Ω1(). Then d𝜂 = Ω.

In natural coordinates of we have that

𝜂 = dz − pi dq
i, d𝜂 = dqi ∧ dpi.

Definition 9. Given a Lagrangian function L ∈ C∞(TQ ×ℝ), let
 = 𝜌∗1L ∈ C∞(). We define theHamiltonian function

 :=  −  = piv
i − (qj, vj, z) ∈ C∞(). (9)

Remark 8. Observe that 𝜂 is a precontact form in  . Hence,
( , 𝜂) is a precontact manifold and ( , 𝜂,) is a precontact
Hamiltonian system.

As a consequence, Equations (1) do not have a unique solution
and the Reeb vector fields are not uniquely defined. In fact, in
natural coordinates of the general solution to (1) are the vector
fields = 𝜕

𝜕z
+ Fi 𝜕

𝜕vi
for arbitrary coefficients Fi. Nevertheless, as

we have pointed out, the formalism is independent on the choice
of these Reeb vector fields. In our case, as = TQ ×Q T∗Q ×ℝ
is a trivial bundle over ℝ, the canonical vector field 𝜕

𝜕z
of ℝ can

be lifted canonically to a vector field in , which can be taken as
a representative of the family of Reeb vector fields.

3.2. Contact Dynamical Equations

Definition 10. The Lagrangian-Hamiltonian problem associated
with the contact system ( , 𝜂,) consists in finding the integral
curves of a vector field X ∈ 𝔛() satisfying that ♭(X ) = d −
(() +)𝜂; that is, which is a solution to the contact Hamiltonian
equations

i(X )d𝜂 = d − (())𝜂, i(X )𝜂 = −. (10)

or, what is equivalent,

L(X )𝜂 = −(()) 𝜂, i(X )𝜂 = − ,

Then, the integral curves 𝝈 : I ⊂ ℝ →  of X , are the solutions
to the equations

i(𝝈′)d𝜂 =
(
d − (())𝜂

)
◦𝝈, i(𝝈′)𝜂 = −◦𝝈. (11)

As ( , 𝜂,) is a precontact Hamiltonian system, these equa-
tions are not compatible everywhere in , and we need to imple-
ment the standard constraint algorithm in order to find the final
constraint submanifold of (if it exists) where there are consis-
tent solutions to the equations. Next we detail this procedure.
In a natural chart in  , the local expression of a vector field

X ∈ 𝔛() is

X = f i 𝜕

𝜕qi
+ Fi 𝜕

𝜕vi
+Gi

𝜕

𝜕pi
+ f 𝜕

𝜕z
; (12)

and therefore we obtain that

i(X )𝜂 = f − f ipi ,

i(X )d𝜂 = f i dpi −Gi dq
i.

Furthermore,

d = vidpi +
(
pi −

𝜕

𝜕vi

)
dvi − 𝜕

𝜕qi
dqi − 𝜕

𝜕z
dz ,

(())𝜂 = −𝜕

𝜕z
(dz − pidq

i).
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Then, the second Equation (10) gives

f = (f i − vi) pi +  , (13)

and the first Equation (10) leads to:

coefficients in dpi : f
i = vi , (14)

coefficients in dvi : pi =
𝜕

𝜕vi
, (15)

coefficients in dqi : Gi =
𝜕

𝜕qi
+ pi

𝜕

𝜕z
, (16)

and the equalities from the coefficients in dz hold identically.
From these equations, first we have that:

• The Equations (14) are the holonomy conditions (i.e., X is a
sode). Thus, as it is usual, the sode condition arises straight-
forwardly from the unified formalism. This property reflects
the fact that this geometric condition in the unified formalism
is stronger than in the standard Lagrangian formalism.

• The algebraic Equations (15) are compatibility conditions
defining a submanifold1 →  , which is the first constraint
submanifold of the Hamiltonian precontact system ( , 𝜂,),
and is the graph of L; that is,

1 = {(vq,L(vq)) ∈  ∣ vq ∈ TQ}.

In this way, the unified formalism includes the definition of
the Legendre map as a consequence of the constraint algo-
rithm.

Therefore, vector fields solution to (10) are of the form

X = vi 𝜕

𝜕qi
+ Fi 𝜕

𝜕vi
+
(
𝜕

𝜕qi
+ pi

𝜕

𝜕z

)
𝜕

𝜕pi
+ 

𝜕

𝜕z
(on1).

Next, the constraint algorithm continues by demanding that X

must be tangent to 1, to ensure that dynamic trajectories re-
main in1. As 𝜉

1
j = pj −

𝜕

𝜕vj
∈ C∞() are the constraints defin-

ing1, this condition is

X

(
pj −

𝜕

𝜕vj

)
= − 𝜕2

𝜕qi𝜕vj
vi − 𝜕2

𝜕vi𝜕vj
Fi

− 𝜕2

𝜕z𝜕vj
+ 𝜕

𝜕qj
+ pj

𝜕

𝜕z
= 0 (on1). (17)

At this point we have to distinguish:

• If L is a regular Lagrangian, these equations allow us to de-

termine all the functions Fi = dvi

dt
; then the solution is unique

and the algorithm ends.
• If L is singular, then these equations establish relations among
the arbitrary functions Fi: some of them remain undetermined
and the solutions are not unique. Eventually, new constraints
𝜉2
𝜇
∈ C∞() can appear, defining a new submanifold 2 →

1 →  and then the algorithm continues by demanding
that X must be tangent to 2, and so on until we obtain a

final constraint submanifoldf (if it exists) where tangent so-
lutions X exist.

Now, if 𝝈(t) = (qi(t), vi(t), pi(t), z(t)) is an integral curve of

X , we have that f
i = dqi

dt
, Fi = dvi

dt
, Gi =

dpi
dt
, f = dz

dt
, and then the

Equations (13), (14), (15), and (16) lead to the coordinate expres-
sion of the Equations (11); in particular:

• From (14), we have that vi = q̇i; that is, the holonomy condition.
• Using (14) again, the Equation (13) leads to

ż =  , (18)

which is just the Equation (7).
• The Equations (16) read

ṗi =
𝜕

𝜕qi
+ pi

𝜕

𝜕z
= −

(
𝜕

𝜕qi
+ pi

𝜕

𝜕z

)
,

which are the second group ofHamilton’s Equations (4). Then,
using (15) (that is, on1), these equations are

d
dt

(
𝜕L
𝜕vi

)
= 𝜕

𝜕qi
+ 𝜕

𝜕vi
𝜕

𝜕z
,

which are the Euler-Lagrange Equations (8). The first group
of Hamilton’s Equations (4) arises straightforwardly from the
definition of the Hamiltonian function (9), taking into account
the holonomy condition.

• Using (15) (that is, on1) and (18), the tangency condition (17)
gives again the contact Euler-Lagrange Equations (8). Observe
that, if L is singular, these equations could be incompatible.

3.3. Recovering the Lagrangian and Hamiltonian Formalisms and
Equivalence

Next we study the equivalence of the unified formalism with the
Lagrangian and Hamiltonian formalisms.
First, observe that, denoting by 𝚥1 : 1 →  the natural em-

bedding, we have that

(𝜌1◦𝚥1)(1) = TQ ×ℝ, (𝜌2◦𝚥1)(1) = P1 ⊆ T∗Q ×ℝ.

In particular P1 is a submanifold of T∗Q ×ℝwhen L is an almost-
regular Lagrangian (see Remark 7) and P1 = T∗Q ×ℝ when L is
hyperregular (or an open set of T∗Q ×ℝ if L is regular). Further-
more, as 1 is the graph of the Legendre map L, it is diffeo-
morphic to TQ ×ℝ, being the restricted projection 𝜌1◦𝚥1 this dif-
feomorphism. In the same way, in the almost-regular case, for
every submanifold 𝚥𝛼 : 𝛼 →  obtained by application of the
constraint algorithm, we have

(𝜌1◦𝚥𝛼)(𝛼) = S𝛼 → TQ ×ℝ,

(𝜌2◦𝚥𝛼)(𝛼) = P𝛼 → P1 → T∗Q ×ℝ,
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and, as 𝛼 ⊆ 1 = graphL, then L(S𝛼) = P𝛼 . Finally, let 𝚥f :
f →  the final constraint submanifold, and

(𝜌1◦𝚥f )(𝛼) = Sf → TQ ×ℝ,

(𝜌2◦𝚥f )(𝛼) = Pf → P1 → T∗Q ×ℝ.

We have the diagram

Every function or differential form in  and the vector fields in
 tangent to1 can be restricted to1. Then, they can be trans-
lated to the Lagrangian or the Hamiltonian side by using that
1 is diffeomorphic to TQ ×ℝ, or projecting to the second fac-
tors of the product bundle, T∗Q ×ℝ. Therefore, bearing this in
mind, the results and the discussion in the above section lead to
state:

Theorem 2. Every path 𝝈 : I ⊆ ℝ →  , taking values in 1, can
be split as 𝝈 = (𝝈L,𝝈H), where 𝝈L = 𝜌1◦𝝈 : I ⊆ ℝ → TQ ×ℝ and
𝝈H = L◦𝝈L : I ⊆ ℝ → P1 ⊆ T∗Q ×ℝ.
Let 𝝈 : ℝ →  , with Im (𝝈) ⊂ 1, be a path fulfilling the Equa-

tions (11) (at least on the points of a submanifoldf → 1). Then
𝝈L is the prolongation to TQ ×ℝ of the projected curve c = 𝜌0◦𝝈 :
ℝ → Q ×ℝ (that is, 𝝈L is a holonomic section), and it is a solution
to the Equations (5). Moreover, the path 𝝈H = L◦c̃ is a solution to
the Equations (3) (onf ).
Conversely, for every path c : ℝ → Q ×ℝ such that c̃ is a solution

to the Equation (5) (on Sf ), we have that the section 𝝈 = (̃c,L◦c̃)
is a solution to the Equations (11). Furthermore, L◦c̃ is a solution
to the Equation (3)) (on Pf ).

Notice that, if L is a singular Lagrangian, then these results
hold on the points of the submanifoldsf , Sf and Pf
As the paths 𝝈 : ℝ →  solution to the Equation (11) are the

integral curves of holonomic vector fields X ∈ 𝔛() solution
to (10), and the paths 𝝈L : ℝ → TQ ×ℝ are the integral curves of
holonomic vector fields XL ∈ 𝔛(TQ ×ℝ) solution to (5), then an
immediate corollary of the above theorem is:

Theorem 3. Let X ∈ 𝔛() be a vector field which is solution to the
Equations (10) (at least on the points of a submanifold f → 1)

and tangent to 1 (resp. tangent to f ). Then the vector field XL ∈
𝔛(TQ ×ℝ), defined by XL◦𝜌1 = T𝜌1◦X , is a holonomic vector field
(tangent to Sf ) which is a solution to the Equations (6) (on Sf ), where
 = 𝜌∗1EL.
In addition, every holonomic vector field solution to the Equations

(6) (on Sf ) can be recovered in this way from a vector field X ∈
𝔛() (tangent tof ) solution to the Equations (10) (onf ).

The Hamiltonian formalism is recovered in a similar way, tak-
ing into account that, now, the paths 𝝈H : ℝ → T∗Q ×ℝ are the
integral curves of vector fields XH ∈ 𝔛(T∗Q ×ℝ) solution to (2).
So we have:

Theorem 4. Let X ∈ 𝔛() be a vector field which is solution to
the Equations (10) (at least on the points of a submanifold f →
1) and tangent to 1 (resp. tangent to f ). Then the vector field
XH ∈ 𝔛(T∗Q ×ℝ), defined by XH◦𝜌2 = T𝜌2◦X , is a solution to the
Equations (2) (on Pf and tangent to Pf ), where  = 𝜌∗2H.

Remark 9. These results are the same that those obtained for
the unified formalism of non-autonomous dynamical systems.
Intrinsic proofs of the corresponding theorems can be found in
[3] (see also [9]).

Remark 10. It is important to point out that, when working with
singular Lagrangians, the equivalence between the constraint al-
gorithms in the unified and in the Lagrangian formalism only
holds when the holonomy (or second-order) condition is imposed
as an additional condition for the solutions in the Lagrangian case
since, unlike in the unified formalism, this condition does not
hold in the Lagrangian case (see [39, 47]).

4. Examples

4.1. General Features

In the following examples we consider some dynamical systems
described by Lagrangians which have been modified by adding
a term of dissipation.[15,27] So, we consider the following situa-
tion. Let Q be an n-dimensional differentiable manifold and let
L = 𝜏∗1Lo − 𝛾z ∈ C∞(TQ ×ℝ) be a Lagrangian, where 𝛾 ∈ ℝ and
L0 ∈ C∞(TQ) is a either a regular or a singular Lagrangian. Let
 = TQ ×Q T∗Q ×ℝ be the extended unified bundle, with local
coordinates (qi, vi, pi, z), and denote  = 𝜌∗1L ∈ C∞() which is a
regular or singular Lagrangian depending on the regularity of Lo
(in the singular case, we assume that it is almost-regular). Then

 = piv
i − Lo(q

i, vi) + 𝛾z ∈ C∞() ,

and

d = vidpi +
(
pi −

𝜕Lo
𝜕vi

)
dvi −

𝜕Lo
𝜕qi

dqi + 𝛾 dz.

Now, for a vector field X ∈ 𝔛() with local expression (12), the
Equations (10) give

f i = vi , f = (f i − vi) pi +  =  ,

pi =
𝜕Lo
𝜕vi

, Gi =
𝜕Lo
𝜕qi

− 𝛾 pi.
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We have the submanifold1 = graph(L) →  , and

X

|||1
= vi 𝜕

𝜕qi
+ Fi 𝜕

𝜕vi
+
(
𝜕Lo
𝜕qi

− 𝛾 pi

)
𝜕

𝜕pi
+ (Lo − 𝛾z) 𝜕

𝜕z
.

The tangency condition of X to1 leads to

X

(
pj −

𝜕Lo
𝜕vj

)
= −

𝜕2Lo
𝜕qi𝜕vj

vi −
𝜕2Lo
𝜕vi𝜕vj

Fi +
𝜕Lo
𝜕qj

− 𝛾 pj = 0

(on1).

As remarked in Section 3.2, if the Lagrangian is regular, these
equations allows us to determine all the coefficients Fi and we
have a unique solution. In the singular case, these equations es-
tablish relations among the arbitrary functions Fi and, eventu-
ally, new constraints could appear, defining a new submanifold
2 → 1 →  . Then, the algorithm continues until we obtain
a final constraint submanifoldf (if it exists) where tangent so-
lutions X exist.
If 𝝈(t) = (qi(t), vi(t), pi(t), z(t)) is an integral curve of a solution

X tangent tof , the Equations (11), on the points off , are in
this case

ż = Lo − 𝛾z, q̇i = vi,

ṗi = d
dt

(
𝜕L
𝜕vi

)
=

𝜕Lo
𝜕qi

− 𝛾 pi =
𝜕Lo
𝜕qi

− 𝛾
𝜕Lo
𝜕vi

.

Next we analyze three examples: one regular system and two
singular cases, one with a unique solution and the other with
multiple solutions.

4.2. Regular Example: Central Force with Dissipation

Consider the system made of a particle in ℝ3 with mass m,
submitted to a central potential with dissipation. Taking Q =
ℝ3 − {(0, 0, 0)} with local coordinates (qi), the Lagrangian that de-
scribes the dynamics is

L = 1
2
mviv

i −U(r) − 𝛾z ∈ C∞(TQ ×ℝ) ,

where vi = gijv
j, being gij the natural extension to  of the eu-

clidean metric inℝ3, and r =
√
qiqi. In the extended unified bun-

dle  = TQ ×Q T∗Q ×ℝ, with local coordinates (qi, vi, pi, z), we
denote = 𝜌∗1L ∈ C∞(), which has the same coordinate expres-
sion that L and is a hyperregular Lagrangian. Then

 = piv
i − 1

2
mviv

i +U(r) + 𝛾z ∈ C∞() ,

and

d = vidpi + (pi −mvi)dv
i +

U′(r)
r

qi dqi + 𝛾 dz.

Now, for a vector field X ∈ 𝔛(), whose local expression is (12),
the Equations (10) give

f i = vi, f = (f i − vi) pi +  =  ,

pi = mvi, Gi = −
U′(r)
r

qi − 𝛾 pi.

Thus we have the submanifold1 →  defined by

1 = {(qi, vi, pi, z) ∈  ∣ pi −mvi = 0} = graph(L).

and

X

|||1
= vi 𝜕

𝜕qi
+ Fi 𝜕

𝜕vi
−
(
𝛾 pi +

U′(r)
r

qi

)
𝜕

𝜕pi

+
(1
2
mviv

i −U(r) − 𝛾z
)
𝜕

𝜕z
.

Next, the tangency condition of X to1 leads to

X (pi −mvi) = −𝛾 pi −
U′(r)
r

qi −mFi = 0 ⇐⇒ Fi

= − 1
m

(
𝛾 pi +

U′(r)
r

qi
)

(on1),

and the algorithm finishes giving the unique solution

X

|||1
= vi 𝜕

𝜕qi
− 1
m

(
𝛾 pi +

U′(r)
r

qi
)

𝜕

𝜕vi

−
(
𝛾 pi +

U′(r)
r

qi

)
𝜕

𝜕pi
+ 

𝜕

𝜕z
.

Therefore, if𝝈(t) = (qi(t), vi(t), pi(t), z(t)) is an integral curve ofX ,
the Equations (11), on the points of1, are

ż = , q̇i = vi, 1
m

ṗi = v̇i = q̈i = −𝛾 q̇i −
U′(r)
m r

qi ;

which are the Euler-Lagrange equations for the motion of a par-
ticle in a central potential with friction.
As stated in Section 3.3, we can recover the Lagrangian and

the Hamiltonian formalisms by projecting on each factor of
 = TQ ×Q T∗Q ×ℝ. In this case, as L is a hyperregular La-
grangian, L : TQ ×ℝ → T∗Q ×ℝ is a diffeormorphism, and
the constraint algorithm finishes in the manifold 1. Then, in
the Lagrangian formalism, we have the holonomic contact La-
grangian vector field

XL = vi 𝜕

𝜕qi
−

(
𝛾 vi +

U′(r)
mr

qi
)

𝜕

𝜕vi

+
(1
2
mviv

i −U(r) − 𝛾z
)
𝜕

𝜕z
∈ 𝔛(TQ ×ℝ),

and, in the Hamiltonian formalism, we have the contact Hamil-
tonian vector field

XH =
pi
m

𝜕

𝜕qi
−

(
𝛾 pi +

U′(r)
r

qi

)
𝜕

𝜕pi

+
(
pip

i

2m
−U(r) − 𝛾z

)
𝜕

𝜕z
∈ 𝔛(T∗Q ×ℝ).
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4.3. Singular Example: Lagrange Multipliers (the Damped Simple
Pendulum)

The Lagrange multipliers method to incorporate constraints in a
system leads to singular Lagrangians in a natural way, since the
velocities of the multipliers do not appear in the Lagrangian. In
order to expose how to apply this formalism to system with La-
grange multipliers, we present a simple case: the pendulum un-
der gravity with air friction.
Consider a pendulumwithmassm and length l. Its position in

the plain of motion is given by the polar coordinates (r, 𝜃), such
that 𝜃 = 0 while at rest. This motion is restricted to the circum-
ference r = l. The corresponding Lagrangian is

L = 1
2
m(v2r + r2v2

𝜃
) −mgr(1 − cos 𝜃) + 𝜆(r − l)

−𝛾z ∈ C∞(Tℝ3 ×ℝ),

where 𝜆 is the Lagrange multiplier and we have added a dissipa-
tive term −𝛾z. It is a singular Lagrangian since the generalized
velocity v𝜆 does not appear in the Lagrangian. In the extended
unified bundle  = Tℝ3 ×ℝ3 T∗ℝ3 ×ℝ, with local coordinates
(r, 𝜃, 𝜆, vr , v𝜃 , v𝜆, pr , p𝜃 , p𝜆, z), we denote  = 𝜌∗1L ∈ C∞(), which
has the same coordinate expression that L. Then

 = prvr + p𝜃v𝜃 + p𝜆v𝜆 −
1
2
m(v2r + r2v2

𝜃
) +mgr(1 − cos 𝜃)

+𝛾z − 𝜆(r − l) ∈ C∞().

Now, for a vector field X ∈ 𝔛(), whose local expression is (12),
the Equations (10) give

f = ,

fr = vr , f𝜃 = v𝜃 , f𝜆 = v𝜆,

pr = mvr, p𝜃 = r2mv𝜃 , p𝜆 = 0,

Gr = mrv2
𝜃
−mg(1 − cos 𝜃) + 𝜆 − 𝛾pr,

G𝜃 = −mgr sin 𝜃 − 𝛾p𝜃 , G𝜆 = r − l − 𝛾p𝜆.

Thus we have the submanifold1 →  defined by

1 = {(r, 𝜃, 𝜆, vr , v𝜃 , v𝜆, pr , p𝜃 , p𝜆, z) ∈  ∣ pr = mvr,

p𝜃 = mr2v𝜃 , p𝜆 = 0} = graph(L),

and the vector field

X

|||1
= 

𝜕

𝜕z
+ vr

𝜕

𝜕r
+ v𝜆

𝜕

𝜕𝜆
+ v𝜃

𝜕

𝜕𝜃
+ Fr

𝜕

𝜕vr
+ F𝜃

𝜕

𝜕v𝜃
+ F𝜆

𝜕

𝜕v𝜆

+ (mrv2
𝜃
−mg(1 − cos 𝜃) + 𝜆 − 𝛾pr)

𝜕

𝜕pr

− (mgr sin 𝜃 + 𝛾p𝜃)
𝜕

𝜕p𝜃
+ (r − l − 𝛾p𝜆)

𝜕

𝜕p𝜆
.

The tangency condition of X to1 leads to

Fr = rv2
𝜃
− g(1 − cos 𝜃) + 𝜆

m
− 𝛾vr ,

2vrv𝜃 + rF𝜃 = −g sin 𝜃 − 𝛾rv𝜃 , r = l (on1) (19)

So, we recover dynamically the constraint r = l. The tangency
condition to the submanifold2 defined by all these constraints
gives

vr = 0 (on2).

Imposing again the tangency condition on the new submanifold
3 so obtained, we obtain a new equation Fr = 0, which allows
us to compute the Lagrange multiplier

𝜆 = mg(1 − cos 𝜃) −mlv2
𝜃

(on3).

This is a new constraint, and we have the submanifold4, where
the tangency condition leads to obtain a last constraint

v𝜆 = m(3gv𝜃 sin 𝜃 + 2l𝛾v2
𝜃
) (on4).

Finally, the tangency condition on this constraint allows us to de-
termine

F𝜆 = mg
(
3v𝜃 cos 𝜃 − 3

g
l
sin2 𝜃 − 5𝛾v𝜃 sin 𝜃 − 2lgv2

𝜃

)
(on4) ,

and the algorithm finishes with the final constraint submanifold
f = 4, which is defined as

f = {(r, 𝜃, 𝜆, vr , v𝜃 , v𝜆, pr , p𝜃 , p𝜆, z) ∈  ∣ pr = mvr,

p𝜃 = mr2v𝜃 , p𝜆 = 0, r = l, vr = 0,

𝜆 = mg(1 − cos 𝜃) −mlv2
𝜃
, v𝜆 = m(3gv𝜃 sin 𝜃 + 2l𝛾v2

𝜃
)}

and the unique solution

X

|||f
= m(3gv𝜃 sin 𝜃 + 2l𝛾v2

𝜃
) 𝜕
𝜕𝜆

+ v𝜃
𝜕

𝜕𝜃
−
( g
l
sin 𝜃 + 𝛾v𝜃

)
𝜕

𝜕v𝜃

+mg
(
3v𝜃 cos 𝜃 − 3

g
l
sin2 𝜃 − 5𝛾v𝜃 sin 𝜃 − 2lgv2

𝜃

)
𝜕

𝜕v𝜆

−ml(g sin 𝜃 + 𝛾 lv𝜃)
𝜕

𝜕p𝜃

+
(1
2
ml2v2

𝜃
−mgl(1 − cos 𝜃) − 𝛾z

)
𝜕

𝜕z
.

Observe that there are only three independent variables: z, 𝜃, and
v𝜃 . Therefore, for an integral curve of X , the second equation of
(19), on f , gives the equation of motion for the only physical
degree of freedom,

�̈� = −
g
l
sin 𝜃 − 𝛾�̇� ;

which is the usual equation of the damped simple pendulum.
As stated above, we can recover the Lagrangian and the Hamil-

tonian formalisms by projecting on each factor of = Tℝ3 ×ℝ3

T∗ℝ3 ×ℝ. Thus, in the Lagrangian formalism, we have the final
constraint submanifold

Sf = {(r, 𝜃, 𝜆, vr , v𝜃 , v𝜆, z) ∈  ∣ r = l, vr = 0,

𝜆 = mg(1 − cos 𝜃) −mlv2
𝜃
, v𝜆 = m(3gv𝜃 sin 𝜃 + 2l𝛾v2

𝜃
)}
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and the holonomic contact Lagrangian vector field

XL
|||Sf = v𝜃

𝜕

𝜕𝜃
+ v𝜆

𝜕

𝜕𝜆
−
( g
l
sin 𝜃 + 𝛾v𝜃

)
𝜕

𝜕v𝜃
+ F𝜆

𝜕

𝜕v𝜆

+
(1
2
ml2v2

𝜃
−mgl(1 − cos 𝜃) − 𝛾z

)
𝜕

𝜕z
∈ 𝔛(Tℝ3 ×ℝ).

Furthermore, in the Hamiltonian formalism, we have

Pf =
{
(r, 𝜃, 𝜆, pr , p𝜃 , p𝜆, z) ∈ T∗ℝ3 ×ℝ ∣ r = l, p𝜆 = 0,

pr = 0, 𝜆 = mg(1 − cos 𝜃) −
p2
𝜃

ml3

}
and the contact Hamiltonian vector field

XH
|||Pf =

p𝜃
ml2

𝜕

𝜕𝜃
+
(
3g
l2
p𝜃 sin 𝜃 +

2𝛾
ml3

p2
𝜃

)
𝜕

𝜕𝜆

−
(
mlg sin 𝜃 + 𝛾p𝜃

) 𝜕

𝜕p𝜃

+

(
p2
𝜃

2ml2
−mgl(1 − cos 𝜃) − 𝛾z

)
𝜕

𝜕z
∈ 𝔛(T∗ℝ3 ×ℝ).

4.4. Singular Example: Cawley’s Lagrangian with Dissipation

The last example is an academic model based on a known La-
grangian introduced by R. Cawley to study some characteristic
features of singular Lagrangians in Dirac’s theory of constrained
systems.[14]

In Tℝ3 ×ℝ, with local coordinates (qi, vi, z), i = 1, 2, 3, consider
the Lagrangian

L = v1v3 + 1
2
q2(q3)2 − 𝛾z.

In the extended unified bundle = Tℝ3 ×ℝ3 T∗ℝ3 ×ℝ, with lo-
cal coordinates (qi, vi, pi, z), we denote  = 𝜌∗1L ∈ C∞(), which
has the same coordinate expression that L. Then

 = piv
i − v1v3 − 1

2
q2(q3)2 + 𝛾z ∈ C∞().

Now, for a vector field X ∈ 𝔛(), with local expression (12), the
Equations (10) give

p1 = v3, p2 = 0, p3 = v1,

f = , f i = vi, G1 = −𝛾p1, G2 =
1
2
q3 − 𝛾p2,

G3 = q2q3 − 𝛾p3.

Thus we have the submanifold defined by

1 = {(qi, vi, pi, z) ∈  ∣ p1 = v3, p2 = 0, p3 = v1}

= graph(L) →  ,

and the vector fields

X

|||1
= vi 𝜕

𝜕qi
+ Fi 𝜕

𝜕vi
− 𝛾p1

𝜕

𝜕p1
+ 1
2
q3 𝜕

𝜕p2

+
(
q2q3 − 𝛾p3

) 𝜕

𝜕p3
+ 

𝜕

𝜕z
.

The tangency condition of X to 1 leads to determine F1 and
F3 and gives a new constraint,

F1 = q2q3 − 𝛾p3 , F3 = −𝛾p1 , q3 = 0 (on1).

Imposing the tangency condition on the submanifold2 defined
by all these constraints we obtain

v3 = 0 (on2) ,

which, bearing in mind the first constraint p1 = v3, implies that
p1 = 0 (on 2). At this point, the tangency condition holds and
we have the final constraint submanifold

f = {(qi, vi, pi, z) ∈  ∣ p1 = v3 = 0 , p2 = 0 , p3 = v1 , q
3 = 0}

and the family of solutions

X

|||f
= v1 𝜕

𝜕q1
+ v2 𝜕

𝜕q2
− 𝛾v1

𝜕

𝜕v1
+ F2 𝜕

𝜕v2
− 𝛾z 𝜕

𝜕z
.

As in the above examples, we can recover the Lagrangian and
the Hamiltonian formalisms by projecting on each factor of =
Tℝ3 ×ℝ3 T∗ℝ3 ×ℝ. Then, in the Lagrangian formalism, we have
the final constraint submanifold

Sf = {(qi, vi, z) ∈ Tℝ3 ×ℝ ∣ q3 = 0 , v3 = 0}

and the holonomic contact Lagrangian vector fields

XL
|||Sf = v1 𝜕

𝜕q1
+ v2 𝜕

𝜕q2
− 𝛾v1

𝜕

𝜕v1
+ F2 𝜕

𝜕v2
− 𝛾z 𝜕

𝜕z
∈ 𝔛(Tℝ3 ×ℝ).

Furthermore, in the Hamiltonian formalism, we have

Pf = {(qi, pi, z) ∈ T∗ℝ3 ×ℝ ∣ p1 = 0 , p2 = 0 , q3 = 0}

and the unique contact Hamiltonian vector field

XH
|||Pf = p3

𝜕

𝜕q1
+ v2 𝜕

𝜕q2
− 𝛾p1

𝜕

𝜕p1
− 𝛾z 𝜕

𝜕z
∈ 𝔛(T∗ℝ3 ×ℝ) ,

(observe that ker L = ⟨ 𝜕

𝜕v2
⟩).

5. Conclusion and Outlook

We have presented a generalized framework for describing both
the Lagrangian and the Hamiltonian formalism for autonomous
contact dynamical systems. The key tool consists in using the nat-
ural geometric structure of the manifold  = TQ ×Q T∗Q ×ℝ
(the unified or Pontryagin bundle) to define a precontact dynamical
system, starting from a regular or an almost-regular Lagrangian
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function L in TQ ×ℝ. The compatibility of the dynamical equa-
tions stated in leads to define a submanifold1 which is iden-
tified with the graph of the Legendre map L. As in other situa-
tions, the contact dynamical equations in the unified formalism
are of three classes, giving different kinds of information:

- Algebraic (not differential) equations, which, in coordinates,
read pi =

𝜕L
𝜕vi
, and determine the submanifold 1 of  where

the sections solution to the dynamical equations must take
their values. For singular Lagrangians, the constraints defining
1, projected by 𝜌2, give the primary constraints of the Hamil-
tonian formalism; that is, The 𝜌2-projection of1 is the image
of the Legendre transformation.

- The holonomic conditions, which in coordinates are vi = dqi

dt
.

These conditions force the dynamical trajectories to be holo-
nomic curves. This property, which arise straightforwardly
from the dynamical equations in the unified formalism, re-
flects the fact that, in the unified formalism, the second-order
condition is stronger than the in the standard Lagrangian for-
malism.

- The contact Euler–Lagrange equations or, equivalently, the con-
tact Hamiltonian equations.

As we have a precontact dynamical system, a constraint al-
gorithm must be implemented in order to obtain a final con-
straint submanifold f → 1 where there are consistent solu-
tions to the contact equations (i.e., trajectories tangent tof ). As
in the standard unified formalisms, if L is regular, thenf = 1.
This algorithm is related (through the natural projections) with
the corresponding ones in the Lagrangian and the Hamiltonian
sides; although in the Lagrangian case, this equivalence only
holds when the second-order condition is imposed as an addi-
tional condition for the solutions.
In addition, we have also discussed several interesting exam-

ples that illustrate the behaviour of the algorithm in the regular
and singular cases.
The formalism stated here could serve as a starting point to set

the unified formalism for k-contact systems in nonconservative
field theories,[25,26] as well as in other physical systems involving
contact structures.
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